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ABSTRACT: Multivariate curve resolution techniques can be used in order to extract from spectroscopic data of chemical
mixtures the contributions from the pure components, namely, their concentration profiles and their spectra. The curve
resolution problem is by nature a matrix factorization problem, which suffers from the difficulty that the pure component factors
are not unique. In chemometrics the so-called rotational ambiguity paraphrases the existence of numerous, feasible solutions.
However, most of these solutions are not chemically meaningful. The rotational ambiguity can be reduced by adding additional
information on the pure factors such as known pure component spectra or measured concentration profiles of the components.
The complementarity and coupling theory (as developed in J. Chemometrics 2013 27, 106−116) provides a theoretical basis for
exploiting such adscititious information in order to reduce the ambiguity. In this work the practical application of the
complementarity and coupling theory is explained, a user-friendly MATLAB implementation is presented, and the techniques are
applied to spectral data from the rhodium-catalyzed hydroformylation process.

KEYWORDS: spectral recovery, factor analysis, multivariate curve resolution, complementarity and coupling,
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1. INTRODUCTION

For consideration is a given chemical reaction system with
several (potentially unknown) chemical components. Spectro-
scopic measurements on this system are assumed to result in a
series of k spectra. Each spectrum is a vector with n absorbance
values of the chemical mixture with respect to a fixed
wavelength grid. This spectral data can be stored row-wise in
a k×n matrix D.
The matrix formulation of the Lambert−Beer law says that D

has a factorization

=
× × ×
D C A

k n k s s n (1)

where the concentration factor ∈ ×C k s is a nonnegative
matrix which contains column-wise the concentration profiles

of the s pure components with respect to the given time grid.
The spectral factor ∈ ×A s n contains row-wise the pure
component spectra. Nonlinearities and measurement errors can

be taken into account by adding a small error matrix ∈ ×E k n

to the right-hand side of (1).
In chemical applications only the spectral data matrix D is

given and the unknown number s of independent components
as well as the pure component factors C and A are to be
determined. A serious obstacle for this reconstruction problem
is the so-called rotational ambiguity. This means that D usually
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has numerous factorizations into nonnegative matrices C and
A. The problem is to select from this continuum of solutions
the “one” chemically correct solution. The first systematic
analysis of such sets of solutions was done by Lawton and
Sylvestre1 in 1971 for a two-component system. Up to now,
vast literature has been devoted to the rotational ambiguity and
its low-dimensional representation; see for example refs 2−7
and the references therein. However, a systematic analysis of
the rotational ambiguity is not necessary for the determination
of practically useful factorizations. Instead approximation
methods have been developed, which belong to the multivariate
curve resolution (MCR) techniques or to the self-modeling
curve resolution (SMCR) methods; see section 2. Some of
these methods are available in software form such as the
popular MCR-ALS toolbox for multivariate curve resolution
problems.8,9 A further software which is specialized in the
computation of the area of feasible solutions is the FAC-PACK
toolbox.10,11

1.1. Aim of This Work. Here, we are focusing on another
approach to reduce the rotational ambiguity, namely, on the
complementarity and coupling theory.12 This theory allows one
to formulate restrictions on the feasible concentration profiles if
information on the spectra is available and vice versa. The
complementarity and coupling theory has a solid mathematical
foundation and can be formulated in terms of linear and affine
linear subspaces to which certain concentration profiles and
spectra are restricted. The mathematical argumentation is to
some extent related to the duality theory by Rajko.́13

In this work we show how the complementarity and coupling
theory can practically be applied to spectroscopic data. User-
friendly MATLAB code is presented which can be applied to
spectral data matrices D as introduced previously. Finally, our
techniques and program codes are applied to a series of k =
2641 spectra, each with n = 664 wavenumbers, from the
hydroformylation of 3,3-dimethyl-1-butene with a rhodium/
tri(2,4-di- tert-butylphenyl)phosphite catalyst in n-hexane. For
this example problem those parameters are determined which
are associated with feasible nonnegative solutions.

2. SPECTRAL RECOVERY PROBLEM

For a given spectral data matrix ∈ ×D k n, the spectral
recovery problem encompasses the computation of (1) the
number of independent components s and (2) the nonnegative
matrices C and A with D ≈ CA.
The most established approach to compute s and to compute

the factors C and A is the singular value decomposition (SVD)
of D.14 The SVD reads D = UΣVT with orthogonal matrices of
left singular vectors ∈ ×U k k and right singular vectors

∈ ×V n n. Further, Σ is a k × n diagonal matrix with the
singular values on its diagonal and zeros elsewhere. For noise-
free data the number of nonzero singular values equals the
number of independent components s. For noisy data the
numerical rank s of D is the number of singular values larger
than a threshold value (a proper multiple of the machine
precision). The first s left and right singular vectors serve as a
low-dimensional basis for the representation of the factors C
and A; see, e.g., refs 1, 15, and 16. In the following we use the
same notation for the factors U, Σ, and V of the truncated SVD
in which U and V contain only these s singular vectors
corresponding to the largest singular values and Σ is the s × s
diagonal matrix with these singular values on its diagonal. The
direct way to construct C and A with respect to these bases of

singular vectors is to introduce a regular matrix ∈ ×T s s and
its inverse in the form

see, e.g., refs 17−19 on this approach. The introduction of T
and its inverse implies a substantial reduction of the degrees of
freedom for the factorization problem to compute C and A.
The decisive point is that T has only s2 matrix elements, but C
and A together have (k + n)s matrix elements. Having reduced
the degrees of freedom in this way, the so-called rotational
ambiguity is still a difficult obstacle. Usually, a computed
solution (C,A) is not unique and a continuum of solutions
exists if only the nonnegativity constraints are applied; see, e.g.,
refs 5 and 20. Any regular s × s matrix R can be used to
construct the new factors C̃ = CR−1 and Ã = RA. Obviously,
these factors solve the factorization problem since D = ̃ ̃CA. The
new factors are called feasible if C̃ and Ã ≥ 0. Typically,
numerous feasible solutions exist in the form of one continuum
or multiple continua.3 Various techniques have been developed
in order to choose proper solutions. For example one can
introduce soft and hard constraints,21,22 kinetic models,22,23 or
proper additional information on the system in order to
compute an appropriate T and thus the factors C and A.
Further valuable tools are the window and evolving factor
analysis,15,24 the usage of uniqueness theorems,25 and so on.
The book series of ref 17 is an elaborate reference on the wide
range of developments.
In this work we are also interested in the construction of

such T which result in nonnegative factorizations. However,
our focus is somewhat different. We want to analyze the mutual
relation of restrictions on the factor A (for instance by given
spectra) on the restrictions for the feasible concentration prof iles
and vice versa.

3. COMPLEMENTARITY AND COUPLING THEORY

The complementarity and coupling theory is a rigorous
mathematical analysis of the mutual relation between the
factors C and A: see ref 12. In the following we explicitly treat
the case of known spectra and the resulting restrictions on the
concentration profiles. However, the analysis also includes the
case of given concentration profiles and the resulting
restrictions on the spectra since C and A are interchangeable
in the following theorems.
Next the notions “complementarity” and “coupling” are used

in the following sense: If for example the first s0 pure
component spectra A(j,:), j = 1, ..., s0, are known, then (1) the
concentration profiles C(:,i) for the other components i = s0 +
1, ..., s are called complementary and (2) the concentration
profiles C(:,j) for the components j = 1, ..., s0 with the same
indexes are called coupled.

3.1. Colon Notation. The colon notation allows a succinct
representation of the complementarity and coupling theorems
and their mathematical background from linear algebra. This
notation allows one to extract single or multiple columns or
rows from a matrix. For a matrix M the notation M(i,:) defines
the ith row ofM andM(i1:i2,:) is the submatrix of the rows i1 to
i2 of M. Everything works similarly in transposed form; e.g.,
M(:,j) is the jth column ofM. MATLAB also uses this notation.

3.2. Complementarity Theorem. The complementarity
theory says that if a number of s0 spectra of an s-component
system is known, the complementary concentration profiles are
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restricted to an (s − s0)-dimensional linear subspace. The most
restrictive case (aside from the trivial case s = s0 that all spectra
are available) is then s0 = s − 1. The latter case is treated by the
next theorem.
Theorem 3.1 (simplified complementarity theorem): If all

but one pure component spectra are known, then the concentration
prof ile of the remaining pure component is uniquely determined
aside f rom scaling.
The fundamental idea behind the complementarity theory is

to analyze the impact of a given spectrum on T. This implies an
effect on T−1 which can finally be expressed as a restriction on
the factor C. The full complementarity theorem reads as
follows; the proof is contained in ref 12.
Theorem 3.2 (complementarity theorem): If s0 pure

component spectra are known, then the remaining concentration
prof iles are elements of the (s − s0)-dimensional subspace,

Σ= ∈ =y y s yU T: { : , (1 : , : ) 0}s
0

with T(1:s0,:) = A(1:s0,:)V.
In section 4 we explain how these mathematical statements

can be transformed into a practically applicable form. To this
end, MATLAB code is presented which can directly be applied
to the spectroscopic data. However, the mathematical theory
strictly holds for noise-free data and in the absence of any
numerical rounding errorsbut the results still hold
approximately for experimental and slightly noisy data. For a
more detailed discussion of the impact of noise, see section 5
and section 6 for an application to experimental data.
3.3. Coupling Theorem. As introduced in section 3 the

coupling theory provides a relation between the ith pure
component spectrum A(i,:) and the ith concentration profile
C(:,i).
Theorem 3.3 (coupling theorem): If s0 pure component

spectra are known (without loss of generality, we assume these
components to be indexed by i = 1, ..., s0); then the coupled
concentration prof iles C(:,i) fulf ill

∈ =i i sC(: , ) for 1, ...,i( )
0

Therein the i( ) are the (s − s0)-dimensional affine linear
subspaces

Σ= ∈ =y y s y eU T: { : , (1 : , : ) }i s
i

( )
0 (3)

with T(1:s0,:) = A(1:s0,:)V.

Each of the spaces i( ) is an affine linear space. It results (by
left multiplication with UΣ) of the solution y of the
underdetermined system of linear equations

− =s y eT(1 : 1, : ) i (4)

Therein ∈ −ei
s 1 is the ith standard basis vector, which is just

the ith column of the s × s identity matrix. Since T(1:s0,:) has
the rank s0, its null space has the dimension s − s0 and the space
of solutions of (4) has the dimension s − s0. See section 4.3 for
the graphical visualization of the set of feasible profiles C(:,i).
3.4. Nonnegative Solutions. The restrictions of the

complementarity and coupling theory are still to be combined
with the nonnegativity constraint. While theorem 3.1 provides a
unique solution (aside from scaling with a positive scaling
parameter), the other theorems result in linear and affine linear
subspaces including one or more degrees of freedom. Subsets of
these subspaces are to be identified which contain only the

nonnegative concentration profiles. In the following we
consider two types of restrictions:
(I) Explicit nonnegativeness: C(:,i) ≥ 0 is additionally

required for any concentration profile as predicted by the
complementarity and coupling theory.
(II) Consistency: The rank-reduced spectral data matrix D −

C(:,i) A(i,:), which represents the spectral data matrix D after
subtraction of the ith pure component, must again be
nonnegative.
For more details see ref 12.
3.5. Usefulness of the Complementarity and Coupling

Theory. Multivariate curve resolution methods suffer from the
rotational ambiguity. The extraction of the “true” solution is a
difficult problem which can approximately be solved by
introducing hard and soft models (regularizations). Often
some additional knowledge on the factors is available.
The complementarity and coupling theory is a mathemati-

cally rigorous technique to exploit this knowledge for the
computation of a proper factorization D = CA. Formally the
complementarity and coupling theory can be understood as a
hard model for the reduction of the rotational ambiguity.
However, noisy data can result in problems if the truncated
SVD UΣ(:,1:s) V(:,1:s)T is only a poor approximation of D.
Then ∥D − UΣ(:,1: s) V(:, 1:s)T∥F is not small and the residual
may contain unconsidered pure component information. See
section 5 for more details.

4. PRACTICAL IMPLEMENTATION OF THE
COMPLEMENTARITY AND COUPLING THEORY

In this section we give detailed guidance on how to apply the
complementarity and coupling theory to spectral data matrices.
The spectral data matrix is ∈ ×D k n, and we assume s0 pure
component spectra to be given. These spectra are inscribed
row-wise into the matrix ∈ ×A s n0 .
The program code is provided for the very popular

MATLAB (MATrix LABoratory) numerical computing envi-
ronment. Algorithms from numerical linear algebra are easily
accessible in MATLAB as high-level language elements. With
some additional effort the program code can be transferred to
any other program language.

4.1. Initial Steps. The initial steps for the implementation
of each algorithm is to compute an SVD of D (line 1 in each
algorithm) and to ensure a proper orientation of the singular
vectors (lines 2−7 in each algorithm). By testing max(V(:,i)) ≥
− min(V(:,i)) and optional multiplication of the ith left and
right singular vectors by −1, the singular vectors get an
orientation which is numerically reproducible. Otherwise, some
annoying sign ambiguity would interfuse the representation of
the numerical resultsespecially if the complementarity and
coupling theory is considered in the context of the computation
of the area of feasible solutions (AFS); cf. ref 26. In line 8 the
transformation T according to (2) is defined.

4.2. Implementation of the Complementarity Theo-
rem. Algorithm 1 is an implementation of the simplified
complementarity theorem 3.1. All but one spectrum are given;
i.e., s0 = s − 1. The null space of T is represented by the variable
y (in line 9) and left-multiplication with UΣ results in the
complementary concentration profile C(:,s) which is unique
aside from scaling. Once again, the proper sign of C(:,s) is
ensured by lines 11−13.
The implementation of the general complementarity

theorem is more complicated. Algorithm 2 is an implementa-
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tion of the case s0 = s − 2; for the important case of an s = 3-
component system, this remaining option s0 = 1 stands for a
single given spectrum and is the only remaining nontrivial case.
In the lines 10 and 11 the column vector of Y, whose first
component has the largest modulus, is swapped to the first
column of Y. The division by Y(1,1) guarantees that the
resulting matrix Y fulfills Y(1,1) = 1. In line 13 the basis of the
null space is modified in a way that Y(1,2) = 0. With these
preparations and with a proper interval [a,b] which guarantees
nonnegative concentration profiles, these profiles are plotted in
line 16. There is only one such bounded interval [a,b], and a
minimal a as well as a maximal b are to be computed so that the
concentration profiles are nonnegative; cf. section 3.4. The two
restrictions from section 3.4, namely, explicit nonnegativeness
and consistency, are used to construct the two end points of the
interval. Our construction of the first column of Y together with
the Perron−Frobenius theory guarantee that this approach
works properly.
In the lines 14−16 of algorithm 2 a plot of a series of m

nonnegative concentration profiles is generated. Recommended
values for m are 10, 15, or 20. All of this is demonstrated in
section 6.2 for spectroscopic data from the rhodium-catalyzed
hydroformylation.
4.3. Implementation of the Coupling Theorem. The

initial steps in lines 1−8 of algorithm 3 are explained in section
4.1. The main difference compared with the implementation of
the complementarity theorem is that the solution space is now
an af f ine linear subspace.
Algorithm 3 is an implementation of the coupling theorem

for s0 = s − 1; i.e., all but one spectra of the pure components

are known. In line 9 particular solutions for the s − s0
inhomogeneous and underdetermined systems of linear
equations

= =s i e i sT W(1 : , : ) (: , ) , for 1, ...,i0 0

are computed simultaneously. The ith column of W is a
particular solution of the ith linear system. In line 10 the null
space of T is computed. The null space is in general (s − s0)-
dimensional; for s0 = s − 1 this linear space is one-dimensional.
Hence, each solution has a single degree of freedom. For each i,
i = 1, ..., s0, a proper maximal interval [a(i),b(i)] is to be
determined so that the two restrictions (I./II.) for the coupled
concentration profile C(:,i) from section 3.4 are fulfilled.
Restriction I is related with one end point of the interval, and
restriction II is related with the other end point. The resulting
profiles are plotted with respect to an equidistant subdivision of
[a(i),b(i)] in lines 13 and 14 of algorithm 3.
The coupling theorem for general s0 ∈{1, ..., s − 1} is

implemented in a very similar way. Especially, lines 13 and 14
are to be changed as the higher dimensional null space of T
requires a higher dimensional grid for the graphical
representation of the feasible solutions.

5. NOISY AND EXPERIMENTAL DATA
The complementarity and coupling theorems 3.1−3.3 are
formulated for noise-free data. A continuity argument shows
that the results of the complementarity and coupling theorems
still hold approximately for noisy or perturbed data if the signal-
to-noise ratio is large enough. However, if for a certain trace
component the signal-to-noise ratio is very small, then the
complementarity and coupling theory cannot be applied even if
its pure component spectrum could be extracted by elaborated
techniques. References on the extraction of pure component
spectra for trace components with a very low signal-to-noise
ratio and their successful confirmation, e.g., by density
functional theory (DFT) computations, are ref 27 in section
4.4 or refs 28−30.
Next we discuss the influence of random and systematic

noise on the results as well as its dependence on the ratio of
total absorbance of a certain species to the level of noise. The
effects also depend on the used spectroscopic technique.

5.1. Low-Rank Approximation by the SVD. A key step
in spectral recovery techniques is the low-rank approximation
of C and A by using only the s largest singular values and the
associated s left and right singular vectors. If the reconstruction
error D − U(:,1: s) Σ(1: s,1:s) V(:,1: s)T is small, then
multivariate curve resolution methods can work very well.
However, in the presence of systematic noise and if the signal-
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to-noise ratio for a specific component is not small, then the
truncated SVD is not a reliable basis for the reconstruction of
the correct solutions.19,29,31,32 In this case the low-rank
representation T(:,1: s) = A(1: s,:)V cannot reconstruct the
spectral data very well as the error A(1: s,:) − A(1: s,:)VVT is
not small. Then an application of the complementarity and
coupling theory cannot be recommended.
5.2. Trace Components with a Low Signal-to-Noise

Ratio. If the noise level is relatively small and the signals of a
trace component are of a size comparable to the noise level, i.e.,
the signal-to-noise level for this component is large, then a
successful strategy is to work with z singular vectors in order to
construct a number of s spectra with z > s. Then the matrix T in
(2) is a rectangular s × z matrix and T−1 is to be replaced by its
pseudoinverse T+; see ref 29. For this more general situation
the complementarity and coupling theory cannot be applied,
since it has only been formulated for square matrices ∈ ×T s s.
5.3. Further Spectroscopic Techniques. Up to now we

have successfully applied the complementarity and coupling
theory to UV/vis and FT-IR data; see section 6 and refs 7, 12,
and 26. Especially for UV/vis data the size and type of the noise
is not interfering with the computational procedure. However,
for FT-IR data a potential baseline correction is a critical step
whose proper implementation is crucial for the subsequent
computations. In principle the complementarity and coupling
arguments appear to be useful building blocks for extracting
pure component information if proper adscititious information
on the chemical system is available. These techniques might be
a part of a prospective automatic analysis of mixtures, cf. with
the automatic analysis in X-ray powder diffraction.33,34

6. APPLICATION TO THE RHODIUM-CATALYZED
HYDROFORMYLATION PROCESS

In this section the numerical algorithms and program codes are
applied to in situ FT-IR spectroscopic data from the rhodium-
catalyzed hydroformylation process. For the experimental
details see ref 35. Within the spectral interval [1960,2120]
cm−1 three dominant active species can be identified; two of the
pure component spectra of the three components are known.
These are ideal preconditions for the application of the
complementarity and coupling theory.
6.1. Spectral Data and Two Pure Component Spectra.

A series of k = 2641 spectra were taken from the
hydroformylation of 3,3-dimethyl-1-butene with a rhodium/
tri(2,4-di-tert-butylphenyl)phosphite catalyst ([Rh] = 3 × 10−4

mol/L) in n-hexane at 30 °C, p(CO) = 1.0 MPa, and p(H2) =
0.2 MPa. Each spectrum is a vector with n = 664 absorbance
values in the interval [1960,2120] cm−1. Figure 1 shows 34 of
these spectra. Within this spectral interval the reactant 3,3-
dimethyl-1-butene as well as the hydrido and acyl rhodium
complexes are the prevailing components; cf. ref 35. This
statement is supported by the distribution of the singular
values. The three largest singular values are characteristically
larger than the remaining singular values which are close to
zero. Thus, we set s = 3. Figure 2 shows the singular values
together with the left and right singular vectors.
Two spectra of the reaction subsystem are known: The

spectrum of the olefin 3,3-dimethyl-1-butene is available, and
the spectrum of the hydrido complex is known. These two
specta are shown in Figure 3.
6.2. Application of the Complementarity Theorem.

The complementarity theorem can easily be applied. Two of

the three pure component spectra are available so that the
simplified complementarity theorem 3.1 can be used. The
concentration profile of the third component (acyl complex) is
uniquely determined aside from scaling. algorithm 1 with s = 3
results in the concentration profile C(:,2) of the acyl complex;
see Figure 4.

6.3. Application of the Coupling Theorem. Since all but
one pure component spectra are available, algorithm 3 can
directly be applied. Next we explain the computation of the
concentration profile of the olefin. The profile for the hydrido
complex can be computed similarly. After the initialization
phase a particular solutionW of the underdetermined system of
inhomogeneous linear equations TW(:,1) = (1,0)T is
computed; see line 9 in algorithm 3. In Figure 5 UΣW(:,1)
is shown by the solid line. Then the null space of T is
computed. Figure 5 shows UΣy as a broken line for a y ≠ 0

from this null space. The affine linear space (1) in theorem 3.3
is then spanned by all C(:,1) = UΣz with z = W(:,1) + γy and
γ ∈ . Finally, a real interval for γ is to be determined so that
C(:,1) satisfies the two restrictions (I and II) from section 3.4.
For the given data we get γ ∈ [a1,b1] = [1.19,1.98]. (For all
other γ either C(:,1) has negative components or the rank-
reduced matrix D − C(:,1)A(i,:) has negative components.)
Figure 6 shows the resulting feasible concentration profiles

for the olefin. Similarly, the feasible concentration profiles of
the hydrido complex are also contained in a one-dimensional
affine subspace. Together with the nonnegativity restrictions
the remaining profiles are shown in Figure 7.

6.4. Complete Solution. We have shown previously that
the complementarity and coupling theory with two given pure
component spectra uniquely determines one concentration
profile and restricts the concentration profiles of the remaining
two components to one-dimensional affine subspaces. Thus,
the complete factorization D = CA has still a single degree of
freedom.
If some kinetic model is added (in the form of a soft

constraint), then this remaining single degree of freedom can
be removed; see refs 35 and 36 for the details. The resulting
factors are shown in Figure 8.

7. CONCLUSION
The complementarity and coupling theory provides advanta-
geous tools for multivariate curve resolution techniques in
order to exploit the mutual dependence of the partial
knowledge of one factor and the resulting restrictions on the

Figure 1. Selection of 34 of k = 2621 spectra for the k = 2621 × n =
664 spectral data matrix D for the rhodium-catalyzed hydro-
formylation process.
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other factor. The mathematical background and the proofs of
the complementarity and coupling theorems have been
presented in ref12.
However, it is not evident how these theorems can practically

be applied to spectroscopic data. The current work fills this gap
and makes available short programs in MATLAB which can
easily be applied and adapted to the needs of the users. The
application of the software and the interpretation of its results
have been explained step-by-step. The usefulness of the

software is demonstrated for FT-IR spectroscopic data from
the rhodium-catalyzed hydroformylation process.
Something which is not considered in this work is the so-

called area of feasible solutions (AFS) and its combination with
the complementarity theory. The simultaneous representation
of all feasible nonnegative solutions in the form of a spectral
AFS and a concentrational AFS is a very helpful and intuitive
user interface for the application of the complementarity
theory. For further details see refs 11, 26, and 37.

Figure 2. Singular value decomposition of data matrix D from rhodium-catalyzed hydroformylation: (left) the first three left singular vectors;
(middle) the first 30 singular values in a logarithmic plot; (right) the first three right singular vectors.

Figure 3. Two known pure component spectra. The olefin
(component 1) is shown by a blue line and the hydrido complex
(component 3) by a red dashed−dotted line.

Figure 4. Concentration profile C(:,2) of the acyl complex normalized
to maximum 1 by application of the simplified complementarity
theorem in the form of algorithm 1. Left ordinate shows the nonscaled
concentration resulting from algorithm 1; the right ordinate shows the
absolute concentration of the acyl complex by using a kinetic model.36

Figure 5. Construction of the affine linear space for C(:,1). All linear
combinations of the particular solution cp = UΣW(:,1) (solid line) and
the homogeneous solutions ch = UΣy (broken line) span the affine

subspace (1) as given in (3). Then C(:,1) = cp + γch for feasible values
of γ.

Figure 6. Olefin component: Feasible nonscaled concentration profiles
C(:,1) according to the coupling theorem and with γ ∈ [a1,b1] =
[1.19,1.98].
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Figure 8. Complete factorization of the hydroformylation reaction
system (top, concentration profiles; bottom, pure component spectra):
blue solid line, olefin component; green broken line, the acyl complex;
red dashed−dotted line, hydrido complex.
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